COMUNE DI VICENZA

PIANO COMUNALE PER LA LOCALIZZAZIONE DEGLI IMPIANTI DI TELEFONIA MOBILE

ELABORATO REDATTO AI SENSI DELLA LEGGE QUADRO n. 36 DEL 22.02.01 E DELLA CIRCOLARE n. 12 DEL 12.07.2001

E

DATI RILEVAMENTO CAMPO ELETTROMAGNETICO

COMUNE DI VICENZA

PIANO COMUNALE PER LA LOCALIZZAZIONE DEGLI IMPIANTI DI TELEFONIA MOBILE

INDICE

1. SCOPO DELLA RELAZIONE	
2. RIFERIMENTI NORMATIVI	
2.1. LEGISLAZIONE ITALIANA	
3. STAZIONE RADIO BASE	
4. REPERTORIO DATI	6
5. CALCOLO DEL CAMPO ELETTROMAGNETICO	6
6. CALCOLO DELLE ISOLINEE DI CAMPO ELETTROMAGNETICO AMBIENTALE	7
7. SOPRALLUOGO PREVENTICO	8
8. MISURE DI INQUINAMENTO ELETTROMAGNETICO AMBIENTALE	9
8.1. DATA DI EFFETTUAZIONE DELLE MISURE	
8.2. METODOLOGIA DI MISURA	9
8.3. PUNTI DI MISURA	10
8.4. RISULTATI	24
ALLEGATO A	25

1. SCOPO DELLA RELAZIONE

La presente relazione è inserita all'interno del Piano Comunale di settore per la localizzazione degli impianti di telefonia mobile del Comune di Vicenza (VI) ed ha l'obiettivo di monitorare il campo elettromagnetico generato dalle Stazioni Radio Base presenti nel territorio e di descrivere la campagna di misurazioni del campo elettromagnetico eseguita in prossimità delle Stazioni Radio Base presenti nel territorio comunale.

2. RIFERIMENTI NORMATIVI

Limiti di esposizione, valori di cautela, obiettivi di qualità:

- Legge Quadro n. 36 del 22.02.2001;
- D. Lgs. n. 259 del 01.08.03 (Codice delle Comunicazioni Elettroniche);
- DPCM del 08.07.2003;
- Modifiche apportate dal DL n° 172 del 18/10/2012.

Norme tecniche:

- Norma CEI 211-7;
- Norma CEI 211-10;
- Norma CEI 211-10;V1.

2.1 LEGISLAZIONE ITALIANA (D.P.C.M. del 8 LUGLIO 2003)

Le Stazioni Radio Base installate sul territorio italiano devono rispettare i limiti di emissione dei campi elettrici, magnetici ed elettromagnetici definiti dal DPCM 8 Luglio 2003.

La legislazione nazionale introduce e definisce tre livelli di protezione della salute e dell'ambiente: i limiti di esposizione, i valori di attenzione e gli obiettivi di qualità.

Il "Limite di esposizione" è il valore di campo elettrico, magnetico ed elettromagnetico, considerato come valore di immissione, che non deve essere superato in nessuna condizione di esposizione della popolazione e dei lavoratori.

Il "Valore di attenzione" è il valore che non deve essere superato negli ambienti abitativi, scolastici e nei luoghi adibiti a permanenze prolungate. Costituisce una misura di cautela e precauzione per la protezione da possibili effetti a lungo termine eventualmente connessi alle esposizioni ai campi generati all'interno di edifici adibiti a permanenze prolungate non inferiori alle 4 ore.

Gli "Obiettivi di qualità" sono i valori fissati dallo Stato al fine della progressiva minimizzazione dell'esposizione ai campi, nelle aree intensamente frequentate. Si comprendono le superfini edificate ovvero attrezzate permanentemente, per il soddisfacimento dei bisogni sociali, sanitari e ricreativi.

I livelli di protezione appena descritti devono intendersi come valori misurati ad un'altezza di 1,5 metri sul piano di calpestio.

La normativa attuale prevede inoltre che:

• i limiti di esposizione (20 V/m) vanno intesi come media dei valori nell'arco dei 6 minuti;

• i valori di attenzione e gli obiettivi di qualità vanno invece intesi come media dei valori nell'arco delle 24 ore (DL n° 172 del 18/10/2012).

I valori descritti sono di seguito riportati in forma tabellare:

Tabella 1 Limiti di esposizione (DPCM 8 Luglio 2003 allegato B)

Frequenza	Intensità di campo elettrico E (V/m)	Intensità di campo magnetico H (A/m)	Densità di potenza D (W/m²)
0,1 < f < 3 MHz	60	0,2	-
3 < f < 3000 MHz	20	0,05	1
3 < f < 300 GHz	40	0,01	4

Tabella 2 Valori di attenzione (DPCM 8 Luglio 2003 allegato B)

Frequenza	Intensità di campo	Intensità di campo	Densità di potenza D
	elettrico E (V/m)	magnetico H (A/m)	(W/m²)
0,1 MHz < f < 300 GHz	6	0.016	0.10 (3 MHz-300 GHz)

Tabella 3 Obiettivi di qualità (DPCM 8 Luglio 2003 allegato B)

Frequenza	Intensità di campo	Intensità di campo	Densità di potenza D
	elettrico E (V/m)	magnetico H (A/m)	(W/m²)
0,1 MHz < f < 300 GHz	6	0.016	0.10 (3 MHz-300 GHz)

3. STAZIONI RADIO BASE

Le Stazioni Radio Base sono gli impianti di radiotrasmissione dei segnali elettromagnetici necessari a garantire la copertura dei servizi di telefonia cellulare sul territorio.

Ogni Stazione Radio Base è composta da una schiera di antenne inserite all'interno di pannelli verticali alti e stretti che sono montati su torri o pali, o sul tetto degli edifici e che, nel loro insieme, sono comunemente indicati con il termine sito. La Stazione Radio Base offre il servizio in una porzione limitata del territorio, che viene definita "cella".

Le antenne utilizzate nelle Stazioni Radio Base emettono energia in un settore dello spazio che risulta essere piuttosto ampio nel piano orizzontale (con un'apertura angolare che può arrivare fino a 90°), e stretto nel piano verticale (in questo caso, l'apertura è di pochi gradi). I costruttori di antenne, ed i gestori che presentano richieste per nuove installazioni, sono soliti fornire i dati che si riferiscono a queste caratteristiche nella forma di diagrammi di radiazione.

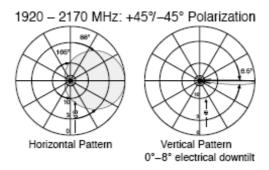


Figura 1: diagramma di radiazione orizzontale (sinistra) e verticale (destra) di antenna UMTS

Ogni Stazione Radio Base è in grado di garantire una copertura "ad ombrello" del territorio, nella quale i valori più intensi del campo si riscontrano di fronte alle antenne, non al di sotto di esse.

Il livello del campo irradiato da una Stazione Radio Base non è fisso nel tempo, ma varia a seconda dell'intensità del traffico telefonico che insiste in un dato istante all'interno della cella che la Stazioni Radio Base serve, e a seconda del sistema di telefonia cellulare.

In Italia sono attualmente operativi due diversi sistemi di telefonia cellulare:

- il GSM (Global System for Mobile Communications);
- I'UMTS (Universal Mobile Telecommunication System).

I vari sistemi di telefonia si distinguono per le bande di frequenza utilizzate e per le specifiche caratteristiche tecniche; la tabella che segue riporta le bande di frequenza per i diversi sistemi. Si noti che il sistema GSM che impiega la banda di frequenza intorno ai 1800 MHz è detto anche DCS ("Digital Cellular System").

Tabella 1 – Sistemi di comunicazione cellulare e frequenze utilizzate

Sistema	Banda (dowlink, MHz)	Banda (uplink, MHz)
TACS*	925 ÷ 936.8	880 ÷ 891.8
GSM 900	921 ÷ 960	876 ÷ 915
DCS 1800	1805 ÷ 1880	1710 ÷ 1785
UMTS	2110 ÷2170	1920 ÷ 1980

^{*} Il sistema TACS (Total Access Communications System) non è invece più utilizzabile, in virtù di quanto stabilito dal D.M. 8 luglio 2002 ("Approvazione del piano di ripartizione delle frequenze").

4. REPERIMENTO DATI

I dati necessari per l'analisi del campo elettromagnetico relativi agli impianti radioelettrici nel Comune di Vicenza, sono stati forniti al Comune dall'ARPAV.

Per tutti i siti di telefonia mobile sono stati presi i singoli dati per antenna, quali:

- Coordinate;
- Altezza centro elettrico dal suolo;
- Abbassamento meccanico;
- Direzione di massima irradiazione;
- Tipo di servizio;
- Modello di antenna;
- Numero massimo di portanti;
- Potenza massima per portante disponibile al connettore d'antenna.

5. CALCOLO DEL CAMPO ELETTROMAGNETICO

Per il calcolo delle isolinee di campo elettrico è stato impiegato un algoritmo basato sul modello di propagazione in spazio libero. La scelta dell'utilizzo di tale modello di propagazione per la valutazione dell'ampiezza del campo elettrico irradiato dalle antenne è stata fatta sulla base di due motivazioni: la prima è il fatto che questa è l'indicazione data della Norma Tecnica CEI 211-10; la seconda il fatto che una valutazione basata su questo modello è cautelativa. Infatti, il modello prevede che il campo elettromagnetico si propaghi in assenza di ostacoli e non tiene dunque conto dell'attenuazione introdotta da alberi, automobili, abitazioni ed edifici in genere. Inoltre, nell'impostare il calcolo si suppone che le antenne siano alimentate continuativamente con la loro potenza massima. Nella realtà invece, e soprattutto nel caso del nuovo sistema di comunicazione UMTS, la potenza di emissione può variare in maniera significativa in funzione del traffico telefonico che insiste in un dato istante in una particolare cella. I valori che si predicono con questo algoritmo di calcolo, dunque, sono certamente superiori a quelli che si riscontrano nella realtà ed è in questo senso che la stima viene ritenuta cautelativa.

Per una singola antenna, l'ampiezza del campo irradiato viene valutata con questo modello come segue. Si indica con $G(\theta,\phi)$ il guadagno di potenza dell'antenna nella direzione dello spazio individuata dagli angoli θ e ϕ del sistema di coordinate sferiche centrate nell'antenna e con r la distanza tra il punto in cui interessa valutare il campo ed il centro elettrico dell'antenna. Per semplicità, e per conformità con i dati tecnici che i produttori di antenne sono soliti rilasciare, si assume che il guadagno possa essere scritto nella seguente forma:

$$G(\theta, \varphi) = G_{max} D_V(\theta) D_H(\varphi)$$
,

dove Gmax è il guadagno dell'antenna lungo la direzione di massima irradiazione, e $Dv(\theta)$ e $DH(\phi)$ sono, rispettivamente, le direttività nel piano verticale ed orizzontale. Detta inoltre Pal, la potenza di alimentazione ai morsetti dell'antenna, si ottiene il valore dell'ampiezza di campo elettrico dalla seguente espressione

$$\left| E(r,\theta,\varphi) \right| = \sqrt{\frac{120\pi \cdot P_{al} \cdot G(\theta,\varphi)}{4\pi r^2}} = \sqrt{30 \ ERP \frac{D_V(\theta) \cdot D_H(j)}{r^2}}$$

Si è introdotto il parametro ERP ("Effective Radiated Power", ove ERP = Pal Gmax) che viene usato di preferenza al posto della potenza di alimentazione e del guadagno perché contiene al suo interno entrambe le caratteristiche tecniche che regolano le prestazioni di una antenna.

Nel caso di presenza di più antenne in una stesso ambito territoriale, il valore del campo elettrico totale viene calcolato tenendo conto che il campo prodotto da ogni antenna è indipendente da quello prodotto da ognuna delle altre. Ne segue che la media temporale della potenza totale è pari alla somma delle potenze medie di ogni antenna, ed il campo è dato dall'espressione

$$|E_{tot}(r,\theta,\varphi)| = \sqrt{\sum_{k} E_{k}^{2}(r_{k},\theta_{k},\varphi_{k})}$$

Nella valutazione del campo elettrico, si è tenuto conto della conformità orografica del terreno; ciò è stato fatto ricostruendo l'altimetria del territorio a partire dalle quote che sono presenti nel layer della carta tecnica regionale, ed utilizzando poi questa ricostruzione per calcolare le corrette coordinate sferiche di ognuno dei punti nei quali interessava valutare l'ampiezza del campo.

6. CALCOLO DELLE ISOLINEE DI CAMPO ELETTROMAGNETICO

Per tutti gli impianti censiti nel catasto regionale dell'ARPAV sono state rappresentate, nelle tavole denominate simulazione orografica di campo elettromagnetico, le isolinee del campo elettrico. Le isolinee sono state calcolate per quote crescenti a partire da un metro sul livello del suolo e dalla base impianto con passo pari a cinque metri, fino all'altezza massima di +40m o +110m a seconda del territorio.

Le isolinee sono state ottenute attraverso l'inserimento dei dati, relativi ad ogni singola antenna presente sulle Stazioni Radio Base, all'interno del simulatore EMLAB 2.9.1.1.

Le isolinee sono rappresentate in corrispondenza ai valori di:

- 1.0 V/m (colore verde)
- 3.0 V/m (colore giallo)
- 4.5 V/m (colore arancione)
- 6.0 V/m (colore rosso)
- 15.0 V/m (colore viola)
- 20.0 V/m (colore nero)

Come è stato ricordato nel capitolo precedente, il calcolo delle isolinee è stato effettuato impiegando il modello di propagazione in spazio libero, senza cioè tener conto dell'attenuazione del campo causata dagli "ostacoli" fisici presenti sul territorio (automobili, edifici, ecc.).

Per facilitare la comprensione delle tavole che contengono le isolinee del campo elettrico, si ritiene opportuno chiarire quanto segue. Si consideri, ad esempio, il fabbricato riportato nella figura seguente.

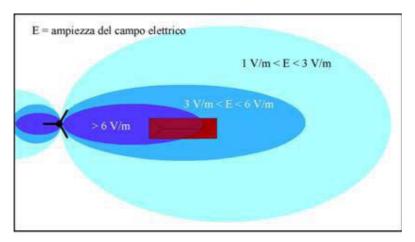


Figura 2: Rappresentazione in pianta

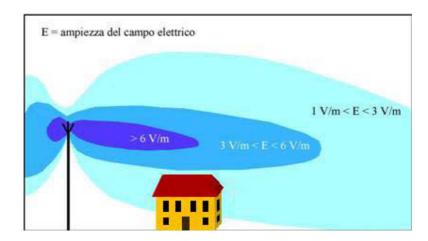


Figura 3: Rappresentazione in sezione

Osservando la rappresentazione in pianta, sembra che il fabbricato sia investito da campi elettrici di ampiezza anche superiore a 6 V/m. In realtà, considerando l'andamento delle isolinee in sezione si può notare come l'ampiezza del campo che interessa effettivamente l'edificio sia compresa tra 1 V/m e 3 V/m.

Pertanto, nel caso in cui si intenda conoscere il campo che investe un dato edificio, si dovrà fare attenzione a confrontare l'altezza del fabbricato stesso con la quota per la quale vengono rappresentate le isolinee del campo elettrico.

7. SOPRALLUOGO PREVENTIVO

E' stato eseguito un sopralluogo preventivo nelle adiacenze delle Stazioni Radio Base, al fine di individuare i luoghi più significativi nei quali effettuare le misure di campo elettromagnetico.

Le indagini sono state rivolte principalmente lungo le direzioni di maggior irraggiamento delle antenne e in prossimità di zone sensibili.

Sulla base delle potenze in gioco degli impianti, della disposizione spaziale delle celle trasmittenti e dei limiti di campo elettrico per l'esposizione della popolazione stabiliti dagli enti normatori competenti, si può ritenere che i punti significativi siano inclusi in un'area di raggio pari a 200 metri dal sistema radiante.

8. MISURE DI INQUINAMENTO ELETTROMAGNETICO AMBIENTALE

8.1 DATA DI EFFETTUAZIONE DELLE MISURE

Le misure di campo elettrico preesistente sono state effettuate nei mesi di settembre e ottobre 2017 nella fascia oraria dalle ore 08:30 alle ore 19:30 circa.

Le condizioni ambientali manifestavano l'assenza di precipitazioni. La temperatura atmosferica era compresa nell'intervallo di buon funzionamento dichiarato dal costruttore della strumentazione utilizzata.

8.2 METODOLOGIA DI MISURA

Le misure di campo elettrico sono state svolte con un misuratore di campo a banda larga mod. PMM 8053B. Le specifiche tecniche dello strumento ed i certificati di calibrazione sono riportati nell'allegato A alla presente relazione.

La stima del campo elettrico è stata realizzata considerando l'onda elettromagnetica diretta senza attenuazione se non quella dovuta alla distanza dei punti più significativi dal sistema radiante. L'asse del sistema di riferimento a 0° è allineato con il Nord geografico e l'asse delle "z" è rivolto verso lo zenit.

In ciascun punto di misura è stata attuata la seguente procedura:

- Installazione del sensore isotropico utilizzando l'apposito sostegno non metallico;
- Impostazione del misuratore di campo in modalità "rms" su un intervallo di 6 minuti;
- Effettuazione della misura di campo elettrico a 1,5 m d'altezza.

In ciascun punto di misura svolto all'interno degli edifici residenziali è stata attuata la seguente procedura:

- Installazione del sensore isotropico utilizzando l'apposito sostegno non metallico;
- Impostazione del misuratore di campo in modalità "rms" su un intervallo di 6 minuti;
- Effettuazione della misura di campo elettrico a tre altezza diverse 1.50 m.

Tale metodologia si attiene alle indicazioni contenute nella normativa CEI 211- 7: Guida per la misura e per la valutazione dei campi elettromagnetici nell'intervallo di frequenza 10 kHz – 300 GHz, con riferimento all' esposizione umana.

COMUNE DI VICENZA

8.3 PUNTI DI MISURA

Le indagini sono state rivolte principalmente lungo le direttrici di maggior irraggiamento delle antenne e in

prossimità di zone sensibili, incluse in un'area di raggio pari a 200 metri dal sistema radiante.

L'obiettivo è stato quello di campionare le zone nelle quali l'impatto elettromagnetico generato dalle Stazioni

Radio Base fosse maggiore.

La campagna di misure ha interessato misure a terra e all'interno dei fabbricati, quest'ultimi selezionati perché,

oltre a trovarsi nella direzione di puntamento dell'antenna e all'interno del raggio di 200 metri dal sistema

radiante, presentano l'ultimo piano ad un'altezza prossima al centro elettrico dell'antenna.

Gli edifici selezionati tra pubblici e privati sono stati 279, per ognuno di questi il Comune ha inviato formalmente ai

proprietari una comunicazione con la richiesta di poter accedere agli edifici; di questi 186 hanno aderito al

monitoraggio, richiedendo in molti casi all'interno del proprio edificio l'esecuzione di più misure.

A fronte dei 156 siti di telefonia mobile presenti sul territorio comunale sono state effettuate 632 misure, delle

quali 354 eseguite all'esterno, cioè alla quota del terreno e 278 all'interno, ovvero al piano più alto degli edifici.

8.4 RISULTATI

Dai valori di campo elettromagnetico calcolati nello stato di fatto si nota come il livello di campo elettromagnetico

nei luoghi con presenza di persone risulti sempre inferiore ai limiti di legge (6V/m).

Anche i dati di misura confermano questo dato in quanto, il valore più alto rilevato nelle misure a terra è stato 1,94

V/m in via dell'Economia, impianto n. 143.

Il valore più alto rilevato all'interno delle abitazioni si è riscontrato nell'edificio in via Domenico Meschinelli,

impianto n. 50, dove nel terrazzo al 4º piano il valore è stato di 1,91 V/m, valore notevolmente diminuito facendo

poi la misura all'interno dell'appartamento dove si è registrato un 0,85 V/m.

I valori misurati sull'intero territorio comunale sia alla quota del terreno che all'interno degli edifici hanno

evidenziato valori di campo elettromagnetico sempre inferiori ai limiti di legge ed in particolare mai superiori a

2,00 V/m.

La posizione cartografica dei punti di misura è riportata alla Tavola n. 5 Campagna di misure, mentre i risultati

ottenuti dalle misurazioni sono di seguito riportati.

Tabella 4 Risultati delle misurazioni

Misura	Valore medio	Posizione	Data
M1	0,30 V/m*	outdoor	04/09/2017
M2	0,30 V/m*	outdoor	04/09/2017
M3	0,82 V/m	outdoor	04/09/2017
M4	0,71 V/m	outdoor	04/09/2017
M5	0,62 V/m	outdoor	04/09/2017
M6	0,74 V/m	outdoor	04/09/2017
M7	0,64 V/m	outdoor	04/09/2017
M8	0,84 V/m	outdoor	04/09/2017
M9	0,63 V/m	outdoor	04/09/2017
M10	0,62 V/m	outdoor	04/09/2017
M11	0,38 V/m	outdoor	04/09/2017
M12	0,55 V/m	outdoor	04/09/2017
M13	0,49 V/m	outdoor	04/09/2017
M14	0,55 V/m	outdoor	04/09/2017
M15	0,94 V/m	outdoor	04/09/2017
M16	0,42 V/m	outdoor	04/09/2017
M17	0,54 V/m	outdoor	04/09/2017
M18	1,27 V/m	outdoor	04/09/2017
M19	0,98 V/m	outdoor	04/09/2017
M20	1,74 V/m	outdoor	04/09/2017
M21	0,65 V/m	outdoor	04/09/2017
M22	0,94 V/m	outdoor	04/09/2017
M23	0,69 V/m	outdoor	04/09/2017
M24	0,42 V/m	outdoor	04/09/2017
M25	0,30 V/m*	outdoor	04/09/2017
M26	0,37 V/m	outdoor	04/09/2017
M27	0,30 V/m	outdoor	04/09/2017
M28	1,04 V/M	outdoor	04/09/2017
M29	1,09 V/M	outdoor	04/09/2017
M30	0,86 V/m	outdoor	04/09/2017
M31	0,73 V/m	outdoor	04/09/2017
M32	0,82 V/m	outdoor	04/09/2017
M33	0,90 V/m	outdoor	04/09/2017
M34	1,00 V/m	outdoor	04/09/2017
M35	1,53 V/m	outdoor	04/09/2017
M36	0,93 V/m	outdoor	04/09/2017
M37	0,56 V/m	outdoor	04/09/2017
M38	0,80 V/m	outdoor	04/09/2017
M39	1,10 V/m	outdoor	04/09/2017
M40	1,10 V/III 1,07 V/m	outdoor	04/09/2017
M41	0,30 V/m	outdoor	04/09/2017
M42	0,44 V/m	outdoor	04/09/2017
M43	0,51 V/m	outdoor	05/09/2017
M44	0,61 V/m	outdoor	05/09/2017
M45	0,38 V/m	outdoor	05/09/2017
M46	0,43 V/m	outdoor	05/09/2017
M47	0,36 V/m	outdoor	05/09/2017
M48	0,46 V/m	outdoor	05/09/2017

M49	0,39 V/m	outdoor	05/09/2017
M50	0,51 V/m	outdoor	05/09/2017
M51	0,49 V/m	outdoor	05/09/2017
M52	0,55 V/m	outdoor	05/09/2017
M53	0,55 V/m	outdoor	05/09/2017
M54	0,40 V/m	outdoor	05/09/2017
M55	1,00 V/m	outdoor	05/09/2017
M56	0,62 V/m	outdoor	05/09/2017
M57	0,95 V/m	outdoor	05/09/2017
M58	0,66 V/m	outdoor	05/09/2017
M59	0,65 V/m	outdoor	05/09/2017
M60	0,43 V/m	outdoor	05/09/2017
M61	0,52 V/m	outdoor	05/09/2017
M62	0,45 V/m	outdoor	05/09/2017
M63	0,45 V/m	outdoor	05/09/2017
M64	0,36 V/m	outdoor	05/09/2017
M65	0,45 V/m	outdoor	05/09/2017
M66	0,88 V/m	outdoor	05/09/2017
M67	0,82 V/m	outdoor	05/09/2017
M68	0,76 V/m	outdoor	05/09/2017
M69	0,54 V/m	outdoor	05/09/2017
M70	0,66 V/m	outdoor	05/09/2017
M71	0,71 V/m	outdoor	05/09/2017
M72	0,38 V/m	outdoor	05/09/2017
M73	0,55 V/m	outdoor	05/09/2017
M74	0,52 V/m	outdoor	05/09/2017
M75	0,73 V/m	Indoor	08/09/2017
M76	0,30 V/m*	outdoor	08/09/2017
M77	0,50 V/m	outdoor	08/09/2017
M78	0,93 V/m	outdoor	08/09/2017
M79	0,56 V/m	outdoor	08/09/2017
M80	0,94 V/m	outdoor	08/09/2017
M81	0,53 V/m	outdoor	08/09/2017
M82	0,49 V/m	outdoor	08/09/2017
M83	0,74 V/m	outdoor	08/09/2017
M84	0,81 V/m	outdoor	08/09/2017
M85	0,60 V/m	outdoor	08/09/2017
M86	0,84 V/m	outdoor	08/09/2017
M87	0,44 V/m	outdoor	08/09/2017
M88	0,43 V/m	outdoor	08/09/2017
M89	0,86 V/m	outdoor	08/09/2017
M90	0,47 V/m	outdoor	08/09/2017
M91	0,65 V/m	outdoor	08/09/2017
M92	0,50 V/m	outdoor	08/09/2017
M93	0,63 V/m	outdoor	08/09/2017
M94	0,94 V/m	outdoor	08/09/2017
M95	0,37 V/m	outdoor	08/09/2017
M96	0,46 V/m	outdoor	08/09/2017
M97	0,70 V/m	outdoor	08/09/2017
M98	0,55 V/m	outdoor	08/09/2017
M99	0,36 V/m	outdoor	08/09/2017
M100	0,89 V/m	outdoor	08/09/2017

M101	0,43 V/m	outdoor	08/09/2017
M102	0,60 V/m	outdoor	08/09/2017
M103	0,63 V/m	outdoor	08/09/2017
M104	0,49 V/m	outdoor	08/09/2017
M105	0,61 V/m	outdoor	08/09/2017
M106	1,94 V/m	outdoor	08/09/2017
M107	0,89 V/m	outdoor	08/09/2017
M108	0,90 V/m	outdoor	08/09/2017
M109	1,22 V/m	outdoor	08/09/2017
M110	0,45 V/m	outdoor	08/09/2017
M111	0,61 V/m	outdoor	08/09/2017
M112	0,51 V/m	outdoor	08/09/2017
M113	0,52 V/m	outdoor	08/09/2017
M114	0,37 V/m	outdoor	08/09/2017
M115	0,47 V/m	outdoor	08/09/2017
M116	0,48 V/m	outdoor	08/09/2017
M117	0,51 V/m	outdoor	08/09/2017
M118	0,38 V/m	outdoor	08/09/2017
M119	0,38 V/m	outdoor	08/09/2017
M120	0,30 V/m*	indoor	11/09/2017
M121	0,30 V/m*	indoor	11/09/2017
M122	0,88 V/m	outdoor	11/09/2017
M123	0,73 V/m	outdoor	11/09/2017
M124	0,65 V/m	indoor	11/09/2017
M125	0,45 V/m	outdoor	11/09/2017
M126	0,99 V/m	indoor	11/09/2017
M127	0,30 V/m*	indoor	11/09/2017
M128	0,30 V/m*	indoor	11/09/2017
M129	0,30 V/m*	indoor	11/09/2017
M130	0,30 V/m*	indoor	11/09/2017
M131	0,30 V/m*	outdoor	11/09/2017
M132	0,30 V/m*	indoor	11/09/2017
M133	1,15 V/m	indoor	11/09/2017
M134	0,71 V/m	indoor	11/09/2017
M135	0,30 V/m*	outdoor	11/09/2017
M136	0,30 V/m*	outdoor	11/09/2017
M137	0,30 V/m*	outdoor	11/09/2017
M138	0,30 V/m*	outdoor	11/09/2017
M139	0,30 V/m*	outdoor	11/09/2017
M140	0,30 V/m*	indoor	12/09/2017
M141	0,30 V/m*	indoor	12/09/2017
M142	0,46 V/m	indoor	12/09/2017
M143	0,30 V/m*	indoor	12/09/2017
M144	0,30 V/m*	indoor	12/09/2017
M145	0,39 V/m	indoor	12/09/2017
M146	0,30 V/m*	indoor	12/09/2017
M147	0,42 V/m	indoor	12/09/2017
M148	0,58 V/m	indoor	12/09/2017
M149	0,51 V/m	indoor	12/09/2017
M150	0,30 V/m*	indoor	12/09/2017
M151	0,68 V/m	indoor	12/09/2017
M152	0,36 V/m	indoor	12/09/2017

M153	0,30 V/m*	indoor	12/09/2017
M154	0,52 V/m	outdoor	12/09/2017
M155	0,38 V/m	outdoor	12/09/2017
M156	0,48 V/m	indoor	12/09/2017
M157	0,48 V/III 0,30 V/m*	indoor	12/09/2017
M158	0,30 V/m*	indoor	12/09/2017
M159	1,64 V/m	indoor	12/09/2017
M160	0,30 V/m*	indoor	12/09/2017
M161	0,30 V/m*	indoor	12/09/2017
M162	0,30 V/m*	indoor	12/09/2017
M163	0,30 V/m*	indoor	12/09/2017
M164	0,30 V/m*	outdoor	12/09/2017
M165	0,59 V/m	indoor	12/09/2017
M166	0,77 V/m	indoor	12/09/2017
M167	1,01 V/m	outdoor	12/09/2017
M168	0,39 V/m	outdoor	12/09/2017
M169	0,69 V/m	outdoor	12/09/2017
M170	0,79 V/m	outdoor	12/09/2017
M171	0,30 V/m*	outdoor	12/09/2017
M172	0,98 V/m	outdoor	12/09/2017
M173	0,67 V/m	outdoor	12/09/2017
M174	0,67 V/m	outdoor	12/09/2017
M175	0,63 V/m	outdoor	12/09/2017
M176	0,39 V/m	outdoor	12/09/2017
M177	1,03 V/m	outdoor	12/09/2017
M178	0,30 V/m*	outdoor	12/09/2017
M179	0,30 V/m*	indoor	12/09/2017
M180	0,30 V/m*	indoor	12/09/2017
M181	1,37 V/m	indoor	13/09/2017
M182	0,43 V/m	indoor	13/09/2017
M183	0,52 V/m	indoor	13/09/2017
M184	0,30 V/m*	indoor	13/09/2017
M185	0,38 V/m	indoor	13/09/2017
M186	0,43 V/m	outdoor	13/09/2017
M187	0,35 V/m	outdoor	13/09/2017
M188	0,30 V/m*	outdoor	13/09/2017
M189	0,35 V/m	outdoor	13/09/2017
M190	0,49 V/m	outdoor	13/09/2017
M191	0,47 V/m	outdoor	13/09/2017
M192	0,65 V/m	outdoor	13/09/2017
M193	0,70 V/m	indoor	13/09/2017
M194	0,39 V/m	indoor	13/09/2017
M195	0,33 V/m	indoor	13/09/2017
M196	0,32 V/m	outdoor	13/09/2017
M197	0,30 V/m*	outdoor	13/09/2017
M198	0,38 V/m	indoor	13/09/2017
M199	0,30 V/m*	indoor	13/09/2017
M200	0,30 V/m*	indoor	13/09/2017
M201	0,32 V/m	outdoor	13/09/2017
M202	0,78 V/m	outdoor	13/09/2017
M203	0,73 V/m	outdoor	13/09/2017
M204	0,56 V/m	outdoor	13/09/2017

M205	0,30 V/m*	outdoor	13/09/2017
M206	0,30 V/m*	outdoor	13/09/2017
M207	0,37 V/m	outdoor	13/09/2017
M208	0,30 V/m*	indoor	13/09/2017
M209	0,30 V/m*	indoor	13/09/2017
M210	0,30 V/m*	indoor	13/09/2017
M211	0,46 V/m	indoor	18/09/2017
M212	0,30 V/m*	indoor	18/09/2017
M213	0,30 V/m*	indoor	18/09/2017
M214	0,30 V/m*	indoor	18/09/2017
M215	0,30 V/m*	indoor	18/09/2017
M216	0,30 V/m*	outdoor	18/09/2017
M217	0,35 V/m	outdoor	18/09/2017
M218	0,30 V/m*	outdoor	18/09/2017
M219	0,30 V/m*	indoor	18/09/2017
M220	0,30 V/m*	indoor	18/09/2017
M221	0,91 V/m	indoor	18/09/2017
M222	0,30 V/m*	outdoor	18/09/2017
M223	0,93 V/m	outdoor	18/09/2017
M224	1,20 V/m	outdoor	18/09/2017
M225	0,86 V/m	outdoor	18/09/2017
M226	0,84 V/m	indoor	18/09/2017
M227	1,03 V/m	indoor	18/09/2017
M228	0,30 V/m	indoor	18/09/2017
M229	0,37 V/m	outdoor	18/09/2017
M230	0,77 V/m	indoor	18/09/2017
M231	0,30 V/m*	indoor	18/09/2017
M232	1,55 V/m	indoor	18/09/2017
M233	0,44 V/m	indoor	18/09/2017
M234	0,30 V/m*	indoor	18/09/2017
M235	0,30 V/m*	indoor	19/09/2017
M236	0,30 V/m*	indoor	19/09/2017
M237	0,30 V/m*	indoor	19/09/2017
M238	0,30 V/m*	indoor	19/09/2017
M239	0,37 V/m	indoor	19/09/2017
M240	0,32 V/m	outdoor	19/09/2017
M241	0,85 V/m	indoor	19/09/2017
M242	0,57 V/m	indoor	19/09/2017
M243	0,30 V/m*	indoor	19/09/2017
M244	0,47 V/m	indoor	19/09/2017
M245	0,59 V/m	indoor	19/09/2017
M246	0,53 V/m	indoor	19/09/2017
M247	0,30 V/m*	indoor	19/09/2017
M248	0,30 V/m*	indoor	19/09/2017
M249	0,30 V/m*	outdoor	19/09/2017
M250	0,30 V/m*	indoor	20/09/2017
M251	0,47 V/m	indoor	20/09/2017
M252	0,30 V/m*	indoor	20/09/2017
M253	0,30 V/m*	indoor	20/09/2017
M254	0,30 V/m*	indoor	20/09/2017
M255	0,30 V/m	outdoor	20/09/2017
141522	0,79 V/m	outdoor	20/09/2017

			1
M257	0,30 V/m*	outdoor	20/09/2017
M258	0,30 V/m*	outdoor	20/09/2017
M259	0,30 V/m*	indoor	20/09/2017
M260	0,30 V/m*	indoor	20/09/2017
M261	0,30 V/m*	indoor	20/09/2017
M262	0,50 V/m	indoor	20/09/2017
M263	0,30 V/m*	indoor	20/09/2017
M264	0,30 V/m*	indoor	20/09/2017
M265	0,30 V/m*	indoor	20/09/2017
M266	0,77 V/m	outdoor	20/09/2017
M267	0,38 V/m	indoor	20/09/2017
M268	0,30 V/m*	indoor	20/09/2017
M269	0,30 V/m*	indoor	11/09/2017
M270	0,30 V/m*	indoor	25/09/2017
M271	0,30 V/m*	indoor	25/09/2017
M272	0,51 V/m	indoor	25/09/2017
M273	0,30 V/m*	indoor	25/09/2017
M274	0,30 V/m*	indoor	25/09/2017
M275	0,30 V/m*	indoor	25/09/2017
M276	0,36 V/m	outdoor	25/09/2017
M277	0,38 V/m	outdoor	25/09/2017
M278	0,45 V/m	outdoor	25/09/2017
M279	0,44 V/m	indoor	25/09/2017
M280	0,54 V/m	indoor	25/09/2017
M281	1,14 V/m	indoor	25/09/2017
M282	0,58 V/m	indoor	25/09/2017
M283	0,53 V/m	outdoor	25/09/2017
M284	0,69 V/m	indoor	26/09/2017
M285	1,14 V/m	indoor	26/09/2017
M286	0,62 V/m	indoor	26/09/2017
M287	0,30 V/m*	indoor	26/09/2017
M288	0,44 V/m	indoor	26/09/2017
M289	0,30 V/m*	indoor	26/09/2017
M290	0,60 V/m	indoor	26/09/2017
M291	0,52 V/m	outdoor	26/09/2017
M292	0,30 V/m*	indoor	26/09/2017
M293	1,27 V/m	indoor	26/09/2017
M294	0,30 V/m*	indoor	26/09/2017
M295	0,49 V/m	indoor	26/09/2017
M296	1,04 V/m	indoor	26/09/2017
M297	1,80 V/m	indoor	26/09/2017
M298	0,65 V/m	indoor	26/09/2017
M299	0,80 V/m	indoor	26/09/2017
	0,80 V/m		<u> </u>
M300	1 1	indoor	26/09/2017
M301	0,30 V/m*	indoor	26/09/2017
M302	0,30 V/m*	indoor	26/09/2017
M303	0,62 V/m	indoor	26/09/2017
M304	0,30 V/m*	indoor	26/09/2017
M305	0,30 V/m*	indoor	26/09/2017
M306	0,53 V/m	indoor	26/09/2017
M307	0,30 V/m*	indoor	26/09/2017
M308	0,46 V/m	indoor	26/09/2017

M309	0,30 V/m*	indoor	26/09/2017
M310	0,76 V/m	indoor	26/09/2017
M311	0,81 V/m	indoor	26/09/2017
M312	0,57 V/m	indoor	26/09/2017
M313	0,40 V/m	indoor	26/09/2017
M314	1,91 V/m	indoor	28/09/2017
M315	0,85 V/m	indoor	28/09/2017
M316	0,58 V/m	indoor	28/09/2017
M317	0,30 V/m*	indoor	28/09/2017
M318	0,30 V/m*	indoor	28/09/2017
M319	0,53 V/m	outdoor	28/09/2017
M320	0,45 V/m	outdoor	28/09/2017
M321	0,73 V/m	outdoor	28/09/2017
M322	0,30 V/m*	indoor	28/09/2017
M323	0,66 V/m	indoor	28/09/2017
M324	0,60 V/m	indoor	28/09/2017
M325	0,63 V/m	indoor	28/09/2017
M326	0,35 V/m	indoor	28/09/2017
M327	0,47 V/m	outdoor	28/09/2017
M328	0,30 V/m*	indoor	28/09/2017
M329	0,30 V/m*	outdoor	28/09/2017
M330	0,30 V/m*	outdoor	28/09/2017
M331	0,33 V/m	outdoor	28/09/2017
M332	0,30 V/m*	outdoor	28/09/2017
M333	0,30 V/m*	indoor	28/09/2017
M334	0,30 V/m*	indoor	28/09/2017
M335	0,40 V/m	indoor	02/10/2017
M336	0,30 V/m*	indoor	02/10/2017
M337	0,68 V/m	outdoor	02/10/2017
M338	0,77 V/m	outdoor	02/10/2017
M339	0,30 V/m*	indoor	02/10/2017
M340	0,76 V/m	outdoor	02/10/2017
M341	0,41 V/m	outdoor	02/10/2017
M342	0,30 V/m*	indoor	02/10/2017
M343	0,51 V/m	outdoor	02/10/2017
M344	0,74 V/m	outdoor	02/10/2017
M345	0,38 V/m	outdoor	02/10/2017
M346	0,82 V/m	outdoor	02/10/2017
M347	0,74 V/m	outdoor	02/10/2017
M348	0,56 V/m	indoor	02/10/2017
M349	0,30 V/m*	outdoor	02/10/2017
M350	0,30 V/m*	outdoor	02/10/2017
M351	0,40 V/m	outdoor	02/10/2017
M352	0,36 V/m	indoor	02/10/2017
M353	0,43 V/m	outdoor	02/10/2017
M354	0,61 V/m	outdoor	02/10/2017
M355	0,53 V/m	indoor	02/10/2017
M356	1,04 V/m	indoor	03/10/2017
M357	0,70 V/m	indoor	03/10/2017
M358	0,96 V/m	outdoor	03/10/2017
M359	0,38 V/m	indoor	03/10/2017
M360	0,30 V/m*	outdoor	03/10/2017

M361	0,86 V/m	outdoor	03/10/2017
M362	1,10 V/m	outdoor	03/10/2017
M363	0,30 V/m*	outdoor	03/10/2017
M364	0,30 V/m*	indoor	03/10/2017
M365	0,30 V/m*	indoor	03/10/2017
M366	0,30 V/m*	indoor	03/10/2017
M367	0,32 V/m	indoor	03/10/2017
M368	0,30 V/m*	indoor	03/10/2017
M369	0,60 V/m	indoor	03/10/2017
M370	0,39 V/m	indoor	03/10/2017
M371	0,30 V/m*	indoor	03/10/2017
M372	0,97 V/m	indoor	03/10/2017
M373	0,30 V/m*	outdoor	03/10/2017
M374	0,61 V/m	indoor	03/10/2017
M375	1,05 V/m	indoor	03/10/2017
M376	0,44 V/m	indoor	03/10/2017
M377	0,75 V/m	indoor	03/10/2017
M378	0,31 V/m	indoor	05/10/2017
M379	0,30 V/m*	indoor	05/10/2017
M380	0,40 V/m	indoor	05/10/2017
M381	0,30 V/m*	indoor	05/10/2017
M382	0,40 V/m	indoor	05/10/2017
M383	0,30 V/m*	indoor	05/10/2017
M384	0,30 V/m*	indoor	05/10/2017
M385	0,30 V/m*	indoor	05/10/2017
M386	0,30 V/m*	outdoor	05/10/2017
M387	0,61 V/m	outdoor	05/10/2017
M388	0,68 V/m	outdoor	05/10/2017
M389	0,63 V/m	indoor	05/10/2017
M390	0,52 V/m	indoor	05/10/2017
M391	0,30 V/m*	outdoor	05/10/2017
M392	0,56 V/m	outdoor	05/10/2017
M393	0,30 V/m*	indoor	05/10/2017
M394	0,35 V/m	outdoor	05/10/2017
M395	0,37 V/m	outdoor	05/10/2017
M396	0,30 V/m*	outdoor	05/10/2017
M397	0,30 V/m*	outdoor	05/10/2017
M398	0,30 V/m*	outdoor	05/10/2017
M399	0,91 V/m	outdoor	05/10/2017
M400	0,88 V/m	outdoor	05/10/2017
M401	0,41 V/m	outdoor	05/10/2017
M402	0,30 V/m*	Outdoor	09/10/2017
M403	0,30 V/m*	outdoor	09/10/2017
M404	0,30 V/m*	indoor	09/10/2017
M405	0,30 V/m*	indoor	09/10/2017
M406	0,39 V/m	indoor	09/10/2017
M407	0,59 V/m	indoor	09/10/2017
M408	0,30 V/m*	outdoor	09/10/2017
M409	0,30 V/m*	outdoor	09/10/2017
M410	0,43 V/m	indoor	09/10/2017
M411	0,43 V/m	outdoor	09/10/2017
M412	0,45 V/m	outdoor	09/10/2017
171712	0,73 V/111	Jataooi	03/10/201/

M413	0,39 V/m	outdoor	09/10/2017
M414	0,30 V/m*	indoor	09/10/2017
M415	0,30 V/m*	indoor	09/10/2017
M416	0,61 V/m	indoor	09/10/2017
M417	0,30 V/m*	indoor	09/10/2017
M418	0,30 V/m*	outdoor	09/10/2017
M419	0,30 V/m*	indoor	09/10/2017
M420	0,30 V/m*	outdoor	09/10/2017
M421	0,30 V/m*	indoor	09/10/2017
M422	0,30 V/m*	outdoor	10/10/2017
M423	0,30 V/m*	indoor	10/10/2017
M424	0,30 V/m*	outdoor	10/10/2017
M425	0,30 V/m*	indoor	10/10/2017
M426	0,30 V/m*	outdoor	10/10/2017
M427	0,36 V/m	indoor	10/10/2017
M428	0,43 V/m	indoor	10/10/2017
M429	0,46 V/m	indoor	10/10/2017
M430	0,82 V/m	outdoor	10/10/2017
M431	1,24 V/m	outdoor	10/10/2017
M432	0,69 V/m	outdoor	10/10/2017
M433	0,30 V/m*	outdoor	10/10/2017
M434	0,30 V/m*	outdoor	10/10/2017
M435	0,30 V/m*	outdoor	10/10/2017
M436	0,30 V/m*	indoor	10/10/2017
M437	0,30 V/m*	indoor	10/10/2017
M438	0,30 V/m*	outdoor	25/09/2017
M439	0,38 V/m	indoor	12/10/2017
M440	0,30 V/m*	indoor	12/10/2017
M441	0,30 V/m*	indoor	12/10/2017
M442	0,30 V/m*	indoor	12/10/2017
M443	0,30 V/m*	indoor	12/10/2017
M444	0,41 V/m	indoor	12/10/2017
M445	0,30 V/m*	indoor	12/10/2017
M446	0,47 V/m	indoor	12/10/2017
M447	0,84 V/m	outdoor	12/10/2017
M448	0,30 V/m*	outdoor	12/10/2017
M449	0,70 V/m	indoor	12/10/2017
M450	0,30 V/m*	outdoor	12/10/2017
M451	0,30 V/m*	indoor	12/10/2017
M452	0,45 V/m	indoor	12/10/2017
M453	0,30 V/m*	indoor	12/10/2017
M454	0,30 V/m*	outdoor	12/10/2017
M455	0,30 V/m*	outdoor	12/10/2017
M456	0,30 V/m*	indoor	16/10/2017
	0,30 V/m*		16/10/2017
M457 M458	0,30 V/m*	indoor	16/10/2017
		outdoor	
M459	0,30 V/m*	indoor	16/10/2017
M460	0,30 V/m*	indoor	16/10/2017
M461	0,34 V/m	outdoor	16/10/2017
M462	0,90 V/m	indoor	16/10/2017
M463	0,30 V/m*	indoor	16/10/2017
M464	0,30 V/m*	indoor	16/10/2017

M465	0,37 V/m	indoor	16/10/2017
M466	0,30 V/m*	indoor	16/10/2017
M467	1,19 V/m	indoor	16/10/2017
M468	0,30 V/m*	outdoor	16/10/2017
M469	0,30 V/m*	outdoor	16/10/2017
M470	0,30 V/m*	outdoor	16/10/2017
M471	0,30 V/m*	outdoor	16/10/2017
M472	0,69 V/m	indoor	17/10/2017
M473	0,30 V/m*	outdoor	17/10/2017
M474	0,30 V/m*	outdoor	17/10/2017
M475	0,30 V/m*	indoor	17/10/2017
M476	0,30 V/m*	outdoor	17/10/2017
M477	0,72 V/m	indoor	17/10/2017
M478	0,61 V/m	outdoor	17/10/2017
M479	0,30 V/m*	outdoor	17/10/2017
M480	0,30 V/m*	outdoor	17/10/2017
M481	0,30 V/m*	outdoor	17/10/2017
M482	0,94 V/m	outdoor	17/10/2017
M483	1,05 V/m	outdoor	17/10/2017
M484	0,30 V/m*	outdoor	17/10/2017
M485	0,40 V/m	outdoor	17/10/2017
M486	0,30 V/m*	outdoor	17/10/2017
M487	0,30 V/m*	outdoor	17/10/2017
M488	0,30 V/m*	outdoor	17/10/2017
M489	0,72 V/m	outdoor	17/10/2017
M490	0,55 V/m	outdoor	17/10/2017
M491	0,70 V/m	outdoor	17/10/2017
M492	0,90 V/m	outdoor	17/10/2017
M493	1,15 V/m	outdoor	17/10/2017
M494	0,54 V/m	outdoor	17/10/2017
M495	0,30 V/m*	outdoor	17/10/2017
M496	0,30 V/m*	outdoor	17/10/2017
M497	0,65 V/m	indoor	19/10/2017
M498	0,30 V/m*	outdoor	19/10/2017
M499	0,36 V/m	outdoor	19/10/2017
M500	0,81 V/m	indoor	19/10/2017
M501	0,38 V/m	indoor	19/10/2017
M502	1,01 V/m	indoor	19/10/2017
M503	0,53 V/m	outdoor	19/10/2017
M504	0,54 V/m	outdoor	19/10/2017
M505	1,48 V/m	outdoor	19/10/2017
M506	0,83 V/m	indoor	19/10/2017
M507	0,33 V/m	indoor	19/10/2017
M508	0,38 V/m	outdoor	19/10/2017
M509	0,36 V/m	indoor	19/10/2017
M510	0,30 V/m*	indoor	19/10/2017
M511	0,47 V/m	indoor	19/10/2017
M512	0,30 V/m*	outdoor	19/10/2017
M513	0,91 V/m	indoor	19/10/2017
M514	1,01 V/m	indoor	19/10/2017
M515	0,43 V/m	indoor	23/10/2017
M516	0,48 V/m	outdoor	23/10/2017
		i	· · · · · · · · · · · · · · · · · · ·

	,		
M517	0,45 V/m	outdoor	23/10/2017
M518	1,34 V/m	outdoor	23/10/2017
M519	1,87 V/m	outdoor	23/10/2017
M520	0,66 V/m	outdoor	23/10/2017
M521	0,45 V/m	outdoor	23/10/2017
M522	0,85 V/m	outdoor	23/10/2017
M523	0,87 V/m	indoor	23/10/2017
M524	0,39 V/m	outdoor	23/10/2017
M525	0,40 V/m	outdoor	23/10/2017
M526	0,90 V/m	outdoor	23/10/2017
M527	0,73 V/m	outdoor	23/10/2017
M528	0,55 V/m	indoor	23/10/2017
M529	0,51 V/m	outdoor	23/10/2017
M530	0,57 V/m	outdoor	23/10/2017
M531	0,57 V/m	outdoor	23/10/2017
M532	1,00 V/m	indoor	23/10/2017
M533	0,41 V/m	outdoor	23/10/2017
M534	0,30 V/m*	indoor	24/10/2017
M535	0,50 V/m	indoor	24/10/2017
M536	0,54 V/m	indoor	24/10/2017
M537	0,89 V/m	indoor	24/10/2017
M538	0,71 V/m	indoor	24/10/2017
M539	0,51 V/m	indoor	24/10/2017
M540	0,51 V/m	outdoor	24/10/2017
M541	0,56 V/m	outdoor	24/10/2017
M542	0,51 V/m	outdoor	24/10/2017
M543	0,62 V/m	outdoor	24/10/2017
M544	0,63 V/m	outdoor	24/10/2017
M545	0,62 V/m	outdoor	24/10/2017
M546	0,52 V/m	indoor	24/10/2017
M547	0,30 V/m*	outdoor	24/10/2017
M548	0,73 V/m	outdoor	26/10/2017
M549	1,51 V/m	indoor	26/10/2017
M550	0,30 V/m*	indoor	26/10/2017
M551	1,82 V/m	indoor	26/10/2017
M552	1,15 V/m	indoor	26/10/2017
M553	0,58 V/m	outdoor	26/10/2017
M554	0,35 V/m	outdoor	26/10/2017
M555	0,80 V/m	outdoor	26/10/2017
M556	0,85 V/m	outdoor	26/10/2017
M557	0,73 V/m	outdoor	26/10/2017
M558	0,46 V/m	outdoor	26/10/2017
M559	0,38 V/m	outdoor	26/10/2017
M560	0,39 V/m	outdoor	26/10/2017
M561	0,42 V/m	outdoor	26/10/2017
M562	0,51 V/m	outdoor	26/10/2017
M563	0,64 V/m	outdoor	26/10/2017
M564	0,56 V/m	outdoor	26/10/2017
M565	0,58 V/m	outdoor	26/10/2017
M566	0,53 V/m	indoor	26/10/2017
M 567	0,82 V/m	indoor	26/10/2017
M568	0,60 V/m	indoor	26/10/2017

M569	0,34 V/m	indoor	26/10/2017
M570	0,52 V/m	outdoor	26/10/2017
M751	0,30 V/m*	outdoor	26/10/2017
M572	0,90 V/m	indoor	26/10/2017
M573	0,37 V/m	indoor	26/10/2017
M574	0,36 V/m	indoor	26/10/2017
M575	0,30 V/m*	indoor	26/10/2017
M576	0,58 V/m	indoor	26/10/2017
M577	1,39 V/m	outdoor	26/10/2017
M578	0,59 V/m	indoor	26/10/2017
M579	1,30 V/m	indoor	26/10/2017
M580	1,05 V/m	indoor	30/10/2017
M581	0,37 V/m	outdoor	30/10/2017
M582	0,30 V/m*	outdoor	30/10/2017
M583	0,30 V/m*	outdoor	30/10/2017
M584	0,42 V/m	outdoor	30/10/2017
M585	0,30 V/m*	outdoor	30/10/2017
M586	0,30 V/m*	indoor	30/10/2017
M587	0,99 V/m	outdoor	30/10/2017
M588	0,30 V/m*	outdoor	30/10/2017
M589	0,99 V/m	outdoor	30/10/2017
M590	0,64 V/m	outdoor	30/10/2017
M591	0,35 V/m	outdoor	30/10/2017
M592	0,58 V/m	outdoor	30/10/2017
M593	0,30 V/m*	outdoor	30/10/2017
M594	0,56 V/m	outdoor	30/10/2017
M595	0,43 V/m	indoor	30/10/2017
M596	0,47 V/m	outdoor	30/10/2017
M597	0,54 V/m	outdoor	30/10/2017
M598	0,30 V/m*	outdoor	30/10/2017
M599	0,30 V/m*	indoor	30/10/2017
M600	0,88 V/m	outdoor	30/10/2017
M601	0,50 V/m	outdoor	30/10/2017
M602	0,30 V/m*	outdoor	30/10/2017
M603	0,30 V/m*	indoor	30/10/2017
M604	0,76 V/m	outdoor	30/10/2017
M605	1,21 V/m	indoor	31/10/2017
M606	0,47 V/m	indoor	31/10/2017
M607	0,55 V/m	outdoor	31/10/2017
M608	0,47 V/m	indoor	31/10/2017
M609	0,46 V/m	indoor	31/10/2017
M610	0,47 V/m	indoor	31/10/2017
M611	0,44 V/m	outdoor	31/10/2017
M612	0,30 V/m*	outdoor	31/10/2017
M613	0,30 V/m*	outdoor	31/10/2017
M614	0,30 V/m*	outdoor	31/10/2017
M615	0,43 V/m	indoor	31/10/2017
M616	1,06 V/m	outdoor	31/10/2017
M617	0,30 V/m*	outdoor	31/10/2017
M618	0,44 V/m	indoor	31/10/2017
M619	1,68 V/m	indoor	31/10/2017
M620	1,78 V/m	indoor	31/10/2017
IVIOZU	1,70 V/III	induui	21/10/201/

M621	0,85 V/m	outdoor	31/10/2017
M622	0,73 V/m	outdoor	31/10/2017
M623	0,30 V/m*	indoor	31/10/2017
M624	0,34 V/m	outdoor	31/10/2017
M625	0,50 V/m	outdoor	31/10/2017
M626	0,73 V/m	outdoor	31/10/2017
M627	0,64 V/m	outdoor	31/10/2017
M628	0,30 V/m*	outdoor	31/10/2017
M629	0,39 V/m	outdoor	31/10/2017
M630	0,90 V/m	outdoor	31/10/2017
M631	0,72 V/m	outdoor	31/10/2017
M632	0,30 V/m*	indoor	31/10/2017

I valori medi risultano tutti abbondantemente al di sotto dei valori di attenzione/obiettivi di qualità di 6,00 V/m.

^{*}Valore sperimentalmente sotto la sensibilità dello strumento che è di 0,30 V/m, viene quindi assunto in via cautelativa questo valore come dato per la valutazione globale.

ALLEGATO A

Specifiche tecniche e certificato di calibrazione misuratore di campo

COMUNE DI VICENZA

PIANO COMUNALE PER LA LOCALIZZAZIONE DEGLI

IMPIANTI DI TELEFONIA MOBILE

Narda Safety Test Solutions S.r.l. Headquarters Via Leonardo da Vinci, 21/23 20090 Segrate (MI) - ITALY Tel.: +39 02 2699871 Fax: +39 02 26998700 Manufacturing Plant Via Benesses, 29/B 17035 Cisano sul Neva (SV) Tel.: +39 0182 58641 Fax: +39 0182 586400

CERTIFICATE OF CALIBRATION

Certificato di taratura

Number 20581-C702 Numero

Item

Oggetto

Electromagnetic Field

Strength Meter

Manufacturer Costruttore

Narda S.T.S. / PMM

Model

Modello

8053B

Serial number

Matricola

262WL20581

Calibration method

Metodo di taratura

Internal procedure

PTP 09-29

Date(s) of measurements

Data(e) delle misure

23.02.2017

Result of calibration

Risultato della taratura

Measurements results within

specifications

This calibration certificate documents the traceability to national/international standards, which realise the physical units of measurements according to the international System of Units (SI).

System of Units (st).

Verification of traceability is guaranteed by mentioning used equipment included in the measurement chain. This equipment includes reference standard directly traceable to (inter)national standard (accuracy rating A) and working standard calibrated by the calibration laboratory of Narda Safety Test Solutions (accuracy rating B) by means of reference standard A or by other accredited calibration laborators.

The measurement uncertainties stated in this document The measurement uncertainties stated in this document are estimated at the level of twice the standard deviation (corresponding, in the case of normal distribution, to a confidence level of about 95%).

The uncertainties are calculated in conformity to the ISO Guide (Guide to the expression of uncertainty in

measurement).

The metrological confirmation system for the measuring equipment used is in compliance with ISO 10012-1. The applied quality system is certified to UNI EN ISO 9001

Questo certificato di taratura documenta la tracciabilità a campioni primari nazionali o internazionali i quali realizzano la riferibilità alle unità fisiche del Sistema Internazionale delle Unità (SI).

La verifica della tracciabilità è garantita elencando gli strumenti

presenti nella catena di misura. La catena di riferibilità metrologica fa riferimento a campioni di prima linea direttamente riferiti a standard (inter/pazionali (classe A), di seconda linea, tarati nel laboratorio metrologico della Narda Safety Test Solutions con riferibilità ai campioni di prima linea oppure tarati da Enti esterni accreditati (classe B).

Le incertezze di misura dichiarate in questo documento sono espresse come due volte lo scarto tipo (corrispondente, nel caso di distribuzione normale, a un livello di confidenza di circa 95%).

Le incertezze di misura sono calcolate in riferimento alla guida ISO. La conferma metrologica della strumentszione usata è conformo alla ISO 10012-1. Il sistema di qualità è certificato

COMPANY WITH QUALITY MANAGEMENT SYSTEM.CERTIFIED BY DNV = ISO 9001:2008 =

narda Safety Test Solutions

2017-FEB-23

NEXT CALIBRATION

Measure Operator Operatore misure

> Bound Gianluca Granelli

Person responsible

Alberto Bessegnini

Responsabile

This calibration certificate may not be reproduced other than in full. Calibration certificate without signature are not valid. The user is recommended to have the object recalibrated at appropriate intervals.

La riproduzione del presente documento è ammessa in copia conforme integrale. Il certificato non è valido in assenza di firme. All'utente dello strumento è raccomandata la ricalibrazione nell'appropriato intervallo di tempo.

Narda Safety Test Solutions S.r.l. Sales & Support: Via Leonardo da Vinci 21/23 20090 Segrate (MI) Tel.: +39 02 2699871 Fax: +39 02 26998700 Manufacturing Plant: Via Benessea, 29/B 17035 Cisano sul Neva (SV) Tel.: +39 0182 58641 Fax: +39 02 586400

CERTIFICATE OF CALIBRATION

Certificato di taratura

Number Numero

20630 -RC703

Item Oggetto Electric field probe 100 kHz - 7000 MHz

Manufacturer

Narda S.T.S. / PMM

Costruttore

Model Modello

EP 745

Serial number

Matricola

000WX20630

Calibration procedure

Procedura di taratura

Internal procedure

PTP 09-29

Date(s) of measurements

Data(e) delle misure

07.03.2017

Result of calibration

Risultato della taratura

Measurements results within specifications

This calibration certificate documents the traceability to national/international standards, which realise the physical units of measurements according to the International System of Units (SI). Verification of traceability is guaranteed by mentioning used equipment included in the measurement, chain. This equipment includes reference standard directly traceable to (inter)national standard (accuracy rating A) and working standard calibrated by the calibration laboratory of Narda Safety Test Solutions (accuracy rating B) by means of reference standard A or by other calibration laboratory.

The measurement uncertainties stated in this document are

estimated at the level of twice the standard deviation (corresponding, in the case of normal distribution, to a confidence level of about 95%). The uncertainties are calculated in conformity to the ISO Guide (Guide to the expression of uncertainty in measurement). The metrological confirmation system for the measuring equipment used is in compliance with ISO 10012-1. The applied quality system is certified to UNI EN ISO 9001.

Questo certificato di taratura documenta la tracciabilità a campioni primari nazionali o internazionali i quali realizzano la riferibilità alle unità fisiche del Sistema Internazionale delle Unità (SI). La verifica della tracciabilità è garantita elencando gli strumenti presenti nella catena di misura.La catena di riferibilità metrologica fa riferimento a campioni di prima linea direttamente riferiti a standard (inter)nazionali (classe A), di seconda linea, tarati nel laboratorio metrologico della Narda Safety Test Solutions con riferibilità ai campioni di prima linea oppure tarati da Enti esterni accreditati (classe B). Le incertezze di misura dichiarate in questo documento sono espresse come due volte lo scarto tipo (corrispondente, nel caso di distribuzione normale, a un livello di confidenza di circa 95%). Le incertezze di misura sono calcolate in riferimento alla guida ISO. La conferma metrologica della strumentazione usata è conforme alla ISO 10012-1. Il sistema

> COMPANY WITH QUALITY MANAGEMENT SYSTEM CERTIFIED BY DNV = ISO 9001:2008 =

di qualità è certificato ISO 9001.

Date of issue Data di emissione

13.03.2017

Measure operator Operatore misure

CHERATORE n. 05

Person responsible Responsabile

This calibration certificate may not be reproduced other than in full. Calibration certificate without signature are not valid. The user is recommended This calibration certificate may not be reproduced count than a state of the properties of the propert